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A NEW DOMAIN DECOMPOSITION APPROACH
FOR THE GUST RESPONSE PROBLEM

Abstract

A domain decomposition method is developed
for solving the aerodynamic/aeroacoustic problem
of an airfoil in a vortical gust. The computa-
tional domain is divided into inner and outer regions
wherein the governing equations are cast in different
forms suitable for accurate computations in each re-
gion. Boundary conditions which ensure continuity
of pressure and velocity are imposed along the inter-
face separating the two regions. A numerical study is
presented for reduced frequencies ranging from 0.1
to 3.0. It is seen that the domain decomposition
approach is far superior to the conventional single
domain approach in providing robust and grid inde-
pendent solutions.

I. Introduction

Many flow fields that occur in aerospace ap-
plications involve upstream flow disturbances which
propagate downstream, interact with structural
components, and radiate sound. Typical examples
include turbulent flow past a wing, unsteady flow
around a propeller blade, and unsteady flow through
a row of stator blades.

The governing equations for such flows are the
unsteady Navier-Stokes equations. However, viscous
effects are often confined to small regions of the flow,
and the unsteady Euler equations can be solved in-
stead. If one further assumes that the convected
disturbances are not too large, and that the flow
moves at high speed, then one can invoke the “rapid
distortion”1,2 approximation and solve the linearized
unsteady Euler equations. In this case, one obtains
the zeroth-order steady mean flow first, and then ob-
tains the unsteady flow as a first-order perturbation.
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When the mean flow is both inviscid and irro-
tational, the steady velocity can be expressed as the
gradient of a potential, and the problem for deter-
mining the unsteady flow can be reduced to solving a
single convective wave equation with a dipole source
term. This was first shown by Goldstein3, who de-
composed the unsteady velocity into the sum of a
potential component ~∇φ, and a vortical component
~u(I), so that ~u(~x, t) = ~∇φ + ~u(I). ~u(I) is a known
function of the upstream velocity disturbances and
the mean flow Lagrangian coordinates. φ satisfies

D0

Dt
(

1
c02

D0φ

Dt
) − 1

ρ0

~∇ · (ρ0
~∇φ) =

1
ρ0

~∇ · (ρ0~u
(I)),

where c0 is the mean flow speed of sound, ρ0 is the
mean flow density, and D0

Dt is the convective deriva-
tive based on the mean flow velocity. The unsteady
pressure is given by p = −ρ0

D0φ
Dt . Goldstein’s for-

mulation thus reduces the linearized Euler equations
to a single convective wave equation.

For most aerodynamic flows, there will be a
frontal stagnation point or line where the mean ve-
locity vanishes and the Lagrangian coordinates be-
come singular. In this case, ~u(I) also becomes sin-
gular and remains so along the body surface. This
makes it difficult to use Goldstein’s formulation di-
rectly for numerical calculations, since the potential
velocity component ~∇φ must cancel the singular be-
havior of ~u(I) to satisfy the impermeablity condition.

Atassi and Grzedzinski4 proposed a modified
splitting of the unsteady velocity which removes the
singular and indeterminate character of the vorti-
cal velocity on the body surface. Here the un-
steady velocity is decomposed into the sum of an un-
known potential component ~∇φ, and a known vorti-
cal component ~u(R), where ~u(R) has zero normal and
streamwise velocity components on the body surface.
The potential φ satisfies Goldstein’s convective wave
equation with a modified source term,

D0

Dt
(

1
c02

D0φ

Dt
) − 1

ρ0

~∇ · (ρ0
~∇φ) =

1
ρ0

~∇ · (ρ0~u
(R)).
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The surface boundary condition for φ is no longer
singular and is in fact just ~∇φ · ~n = 0.

In a series of papers5−10, Scott and Atassi pre-
sented the first numerical implementation of Atassi
and Grzedzinski’s linearized formulation for the case
of unsteady vortical flow past a single airfoil. The
main objective in this effort was to develop an aero-
dynamic solver, the GUST3D code, which could
accurately predict the airfoil unsteady response to
three-dimensional, periodic vortical gusts.

Another series of papers11−15 focused on the
far-field aeroacoustic response. It was noted in these
papers that, although the GUST3D code produced
an accurate near-field solution, there was a signifi-
cant loss of accuracy in the far field. As a result,
these papers concentrated on the development of
Kirchoff methods to extend the GUST3D mid-field
solution to the far field. Comparison of Kirchoff re-
sults with analytical solutions showed this to be a
promising approach.

Building on this work, Scott16 presented a se-
ries of benchmark solutions for CAA code vali-
dation at the recent Third Computational Aeroa-
coustics Workshop on Benchmark Problems. Com-
parison with results from nonlinear time-marching
codes16−21 showed good agreement on the airfoil sur-
face and good agreement in the far field for low re-
duced frequencies. However, there were some dis-
crepancies in the high reduced frequency compar-
isons.

An extensive evaluation of the GUST3D code
indicated that, as the reduced frequency increases,
the source term calculated by the code grows rapidly
in the far field and oscillates, making it difficult to
obtain an accurate solution.

The purpose of this paper is to present a new
domain decomposition approach which largely cor-
rects this problem. The basic idea is to divide the
flow field into inner and outer regions, and to use the
Atassi-Grzedzinski formulation in the inner region
and the Goldstein formulation in the outer region.
It will be seen that this approach leads to substantial
improvements in accuracy, both on the airfoil and in
the far field.

II. Mathematical Formulation

Governing Equations
Consider an airfoil with chord length c in a flow

with uniform upstream velocity U∞ in the x1 direc-
tion. Let the fluid be an ideal gas which is inviscid
and non-heat-conducting. Far upstream, let

~u∞ = ~a ei~k·(~x−~iU∞t) (2.1)

denote a small amplitude gust, where ~i is a unit
vector in the x1 direction. Here ~a = (a1, a2, a3),
where the amplitude |~a| satisfies |~a| << U∞, ~k =

(k1, k2, k3) is the wave number vector, and ~a and ~k
satisfy ~a · ~k = 0 to ensure that the continuity equa-
tion is satisfied.

Let the flow field be represented by

~U(~x, t) = ~U0(~x) + ~u(~x, t) (2.2)

p(~x, t) = p0(~x) + p′(~x, t) (2.3)

ρ(~x, t) = ρ0(~x) + ρ′(~x, t) (2.4)

s(~x, t) = s0 + s′(~x, t) (2.5)

where the entropy s0 is constant, and ~u, p′, ρ′, and
s′ are the unsteady perturbation velocity, pressure,
density and entropy, respectively. Quantities with
“0” subscripts are the steady mean flow quantities
which are assumed to be known.

Substituting (2.2) – (2.5) into the nonlinear Eu-
ler equations and neglecting products of small quan-
tities, one obtains the linearized continuity, momen-
tum, and entropy conservation equations

D0ρ
′

Dt
+ ρ′~∇ · ~U0 + ~∇ · (ρ0~u) = 0 (2.6)

ρ0(
D0~u

Dt
+ ~u · ~∇~U0) + ρ′~U0 · ~∇~U0 = −~∇p′ (2.7)

D0s
′

Dt
= 0, (2.8)

where D0
Dt = ∂

∂t + ~U0 · ~∇.
Let the flow field be divided into inner and outer

regions, as shown in Figure 1. In the outer region,
let the unsteady velocity be decomposed according
to Goldstein’s velocity splitting,

~u(~x, t) = ~∇φO + ~u(G), (2.9)

where we define ~u(G) = ~u(I), and where the “O”
subscript denotes the outer region. Equations (2.6)
- (2.8) are then reduced to

LφO =
1
ρ0

~∇ · (ρ0~u
(G)) (2.10)

where

L =
D0

Dt
(

1
c02

D0

Dt
) − 1

ρ0

~∇ · (ρ0
~∇). (2.11)

The unsteady pressure is given by

p′ = −ρ0
D0 φO

Dt
. (2.12)

In the inner region, let the velocity be decom-
posed according to the Atassi-Grzedzinski velocity
splitting,

~u(~x, t) = ~∇φI + ~u(R), (2.13)
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where the “I” subscript denotes the inner region.
Equations (2.6) - (2.8) then reduce to

LφI =
1
ρ0

~∇ · (ρ0~u
(R)). (2.14)

For flows with no upstream entropy disturbances,
~u(R) and ~u(G) are related by4

~u(R) = ~u(G) + ~∇φ̃, (2.15)

where φ̃ is a function which is constructed to cancel
the singularity in ~u(G) on the airfoil surface, so that
φI has a regular boundary condition. It should be
noted that φ̃ has no pressure associated with it, so
that the unsteady pressure in the inner region is just

p′ = −ρ0
D0 φI

Dt
. (2.16)

Boundary Conditions
At the airfoil surface, the normal velocity com-

ponent must vanish. Since ~u(R) has zero normal and
streamwise velocity components along the airfoil sur-
face, the airfoil boundary condition is just

~∇φI · ~n = 0. (2.17)

Across the wake, in both the inner and outer
regions, the pressure and normal velocity must be
continuous. For the pressure, this leads to

p′+ − p′− = −ρ0

D0

(
φ+ − φ−

)
Dt

= 0, (2.18)

where “+” and “-” subscripts denote quantities
above and below the wake, respectively. (The inner
and outer subscripts are omitted here for simplicity.)
The inner and outer potentials must then satisfy

D0

(4φ
)

Dt
= 0, (2.19)

where 4φ denotes the jump in φ across the wake.
For continuity of normal velocity, the potentials
must satisfy

~∇φ+ · ~n = ~∇φ− · ~n. (2.20)

On the outer grid boundary, a radiation bound-
ary condition must be imposed. This will be dis-
cussed in the next section.

Finally, interface conditions must be specified at
the boundary separating the inner and outer regions.
Analogous to the wake, the pressure and velocity
should be continuous. For the pressure, this requires
that

D0 φO

Dt
=

D0 φI

Dt
, (2.21)

where the spatial derivatives in (2.21) are under-
stood to be one-sided.

For the velocity, one uses (2.9) and (2.13) to-
gether with (2.15) to obtain

~∇φO = ~∇φI + ~∇φ̃. (2.22)

Taking the dot product of each term in (2.22) with
the interface unit normal ~n, one obtains the conti-
nuity of normal velocity condition

~∇φO · ~n = ~∇φI · ~n + ~∇φ̃ · ~n. (2.23)

Alternatively, one can integrate (2.22) to obtain the
jump condition

φO − φI = φ̃. (2.24)

The pressure and normal velocity conditions,
equations (2.21) and (2.23), represent a consistent
set of conditions for non-overlapping domain de-
composition. Equation (2.23) is a Neumann con-
dition, while equation (2.21) is a linear combination
of Dirichlet and Neumann conditions. They always
form a linearly independent and therefore robust set
of interface conditions for domain decomposition.

On the other hand, at an interface location
where the mean velocity becomes tangent to the in-
terface, equations (2.21) and (2.24) may not be lin-
early independent. This could lead to difficulties for
some interface configurations.

III. Numerical Implementation

For the most general case, in which the steady
velocity ~U0(~x) varies spatially as a function of ~x,
the right hand sides of (2.10) and (2.14) are ex-
pressed as functions of the mean flow Lagrangian
coordinates. One therefore introduces the variables
(X1, X2, X3) = ~X, where

X2 =
Ψ0

ρ∞U∞
(3.1)

and
X3 = x3, (3.2)

where Ψ0 is the stream function of the mean flow and
x3 is the spatial coordinate in the spanwise direction.
The component X1 is given by

X1 = U∞∆, (3.3)

where ∆ is the Darwin-Lighthill “drift”
function22,23, which can be expressed in terms of Φ0

and Ψ0 as

∆ =
Φ0

U∞2 +
∫ Φ0

−∞
(

1
U0

2 − 1
U∞2 ) dΦ0. (3.4)
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The integration is carried out on Ψ0 = constant (i.e.,
a fixed streamline).

For flows with no upstream entropy fluctua-
tions, Goldstein’s vortical velocity may then be ex-
pressed as

~u(G) = [~∇(~a · ~X)]ei~k·( ~X−~iU∞t), (3.5)

and the Atassi-Grzedzinski vortical velocity is

~u(R) = [~∇(~a · ~X)]ei~k·( ~X−~iU∞t) + ~∇φ̃. (3.6)

The function φ̃ is constructed to cancel the singular-
ity in ~u(G) on the airfoil surface, and is given by4

φ̃ =
i

k1
(a1 +

a2k1 − a1k2

1 + ia0U∞k1

1 − e−ik2X2

k2
)ei~k·( ~X−~iU∞t),

(3.7)
where

a0 = −(∂U0

∂n

)−1

S
. (3.8)

Here n denotes the direction of the outward unit
normal, and S denotes the stagnation point near the
airfoil leading edge.

Now from (3.5) and (2.1), one can show that as
x1 → −∞, ~u(G) → ~u∞. Since we must also have
~u(~x, t) → ~u∞ at upstream infinity, it follows that
in the outer region φO must satisfy ~∇φO → 0 as
x1 → −∞. This ensures that φO has outgoing wave
behavior at infinity.

On the other hand, in the inner region, it fol-
lows from (2.1), (2.13) and (3.6) that φI must satisfy
~∇φI → −~∇φ̃ as one moves toward upstream infin-
ity. It is necessary, therefore, to replace φI with a
function whose gradient vanishes as x1 → −∞. This
will ensure that the new potential has outgoing wave
behavior, and reduce any incompatibility across the
interface separating the inner and outer regions.

Following the formulation presented in [7,10],
we introduce the potential functions φ1 and φ2,
where

φI = φ1 − φ2, (3.9)

and φ2 is a known function which is constructed such
that

|φ2 − φ̃| → 0 as r → ∞, (3.10)

where r denotes polar distance. This ensures that
~∇φ1 → 0 in the far field.

Upon substituting (3.9) into (2.14), the inner
governing equation becomes

Lφ1 =
1
ρ0

~∇ · (ρ0~u
(R)) + Lφ2, (3.11)

where the right hand side consists of known func-
tions. The governing equation in the outer region
remains that given in (2.10)

Equations (2.10) and (3.11) are most conve-
niently solved in the frequency domain using the
(Φ0,Ψ0) orthogonal curvilinear coordinate system,
where Φ0 and Ψ0 are the mean flow potential and
stream functions.

We now assume that all variables have been
nondimensionalized as in [7,10]. The normalized
wave number k1 denotes the reduced frequency, and
the free stream Mach number is denoted by M∞.
We transform into the frequency domain in the in-
ner and outer regions using

φ1 = ϕI e
−ik1t+ik3x3 (3.12)

and
φO = ϕO e

−ik1t+ik3x3 . (3.13)

Transformation into computational coordinates
is then accomplished as follows. First, introduce
Prandtl-Glauert coordinates (Φ,Ψ) by

Φ = Φ0 (3.14a)
Ψ = β∞Ψ0, (3.14b)

where β∞ =
√

1 −M2∞. Then introduce new depen-
dent variables ψI and ψO, where

ϕI = ψI e
−iK0Φ (3.15)

ϕO = ψO e
−iK0Φ (3.16)

and

K0 =
k1M

2
∞

β2∞
. (3.17)

Finally, transform Φ and Ψ into computational co-
ordinates using

Φ = a? cos(πη) cosh(πξ)
(3.18a)

Ψ = a? sin(πη) sinh(πξ),
(3.18b)

where a? is a known constant. The inner governing
equation then becomes

−β2
∞

[∂2ψI

∂η2
+
∂2ψI

∂ξ2
+ J(η, ξ)

(k2
1M

2
∞

β4∞
− k2

3

β2∞

)
ψI

]

+A1 J(η, ξ)ψI + T1
∂ψI

∂ξ
+ T2

∂ψI

∂η
+ T3

∂2ψI

∂ξ2

+T4
∂2ψI

∂η2
+ T5

∂2ψI

∂η∂ξ
= SI , (3.19)

where J , A1, and T1 ... T5 are known functions, and
SI is the source term. Similarly, the outer governing
equation is
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−β2
∞

[∂2ψO

∂η2
+
∂2ψO

∂ξ2
+ J(η, ξ)

(k2
1M

2
∞

β4∞
− k2

3

β2∞

)
ψO

]

+A1 J(η, ξ)ψO + T1
∂ψO

∂ξ
+ T2

∂ψO

∂η
+ T3

∂2ψO

∂ξ2

+T4
∂2ψO

∂η2
+ T5

∂2ψO

∂η∂ξ
= SO. (3.20)

Equations (3.19) and (3.20) are implemented
using nine-point central differencing which is second-
order accurate. Each equation is imposed at interior
grid points within its respective region.

At the interface separating the two regions, one
must ensure that the pressure and velocity are con-
tinuous, as discussed in the previous section. This
is accomplished by using a row of coincident grid
points along the interface, with one set of points
belonging to the inner region and the other set be-
longing to the outer region. (See Figures 2a and b.)
Pressure continuity is satisfied by imposing condi-
tion (2.21). Velocity continuity is satisfied by impos-
ing either (2.23) or (2.24). In calculations to date,
conditions (2.23) and (2.24) have been found to give
nearly identical results.

For wake grid points, continuity of pressure and
normal velocity are enforced by way of equations
(2.19) and (2.20). Equation (2.19) is imposed in
integral form for every wake point on the upper side.
Equation (2.20) is imposed using three-point, one-
sided differencing for every wake point on the lower
side.

On the outer grid boundary, we impose the
Bayliss-Turkel24 radiation boundary condition of or-
der 1. This condition is applied to the unsteady
pressure, and can be written

( ∂

∂r
− B

)( ∂

∂Φ
− A

)
ψO = 0, (3.21)

where

A =
ik1

β2∞
(3.22)

and

B = i k − 1
2 r
. (3.23)

Here k is the Helmholtz constant which is defined by

k2 =
(k1M∞

β2∞

)2

−
( k3

β∞

)2

. (3.24)

Condition (3.21) has proven to be both accurate and
computationally efficient25.

IV. Numerical Results

In this section, we compare numerical results
using the new domain decomposition approach ver-
sus the original single domain approach. All cal-
culations are for a 12% thick, symmetric Joukowski
airfoil in a 2-D gust propagating at 450, i.e., k2 = k1.
The airfoil has zero degrees angle of attack and no
mean loading. The Mach number is 0.5. We consider
reduced frequency values k1 = 0.1, 1.0, 2.0, and 3.0
(with normalization based on the half chord). The
gust amplitude is taken to be 2% of the free stream
velocity.

In the results that follow, we present RMS pres-
sure on the airfoil surface and acoustic intensity in
the far field. For each reduced frequency, we present
results from a series of calculations on five different
grids. Each grid differs only in the location of its
outer grid boundary. The mesh spacing is the same
for all five grids, with uniform η spacing and vari-
able ξ spacing. The ξ spacing provides 24 points per
gust wavelength. Our main objective is to assess the
ability of each approach to give a consistent solution
which does not depend on the outer grid boundary
location.

Figures 3 and 4 show the RMS pressure on the
airfoil surface for the low frequency case k1 = 0.1.
The legend at the top of the figure indicates the dis-
tance (in gust wavelengths) to the outer grid bound-
ary for each grid. This is specified in terms of the
GUST3D parameter “nwaves”. The results in these
figures show that the airfoil pressure is indeed grid
independent for each approach.

Figures 5 and 6 show the corresponding acous-
tic intensity on a circle of radius two chord lengths,
centered about the airfoil center. (This circle lies
within the inner region for all results presented in
this paper. In general, there is no relationship be-
tween the location of the circle and the location of
the interface.) Each figure shows some sensitivity
of the far-field pressure to the location of the outer
grid boundary, with the domain decomposition re-
sults being slightly less sensitive.

We should note that the values of nwaves that
were used in our calculations were designed to op-
timize accuracy for each reduced frequency and for
each computational approach. All figures show re-
sults for five consecutive values of nwaves, where
nwaves was incremented by 0.5. Each figure shows
the best set of five consecutive results available for
that case. This is the reason for the different values
of nwaves that are shown.

In Figures 7-10, we present results for the mid-
frequency case, k1 = 1.0. Here the single domain
results begin to show significant sensitivity to the
change in grid, even on the airfoil surface. On the
other hand, the domain decomposition results are
very nearly grid independent on the airfoil and ac-
ceptably grid independent in the far field.
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In Figures 11 - 18, we present results for the
relatively high reduced frequencies of k1 = 2.0 and
k1 = 3.0. At these higher frequencies, the single do-
main results deteriorate markedly due to the rapidly
growing and oscillating source term, as shown in Fig-
ure 19. The domain decomposition results, however,
give an acceptably grid independent solution both on
the airfoil and in the far field.

We should point out, however, that the domain
decomposition results are somewhat sensitive to the
location of the interface separating the inner and
outer regions, especially at high frequencies. We
should note in addition that grid independence by
itself does not imply accuracy. For this reason, the
k1 = 2.0 and k1 = 3.0 results should be considered
preliminary at this time.

Summary

In this paper we have presented a new domain
decomposition approach for the single airfoil gust re-
sponse problem. We divide the flow field into inner
and outer regions, and use the Atassi-Grzedzinski
linearized Euler formulation in the inner region, and
Goldstein’s linearized Euler formulation in the outer
region. This approach uses each formulation where
it is best suited. In the inner region, the Atassi-
Grzedzinski formulation cancels the singularity in
Goldstein’s vortical velocity, and provides a bound-
ary value problem with regular boundary conditions.
In the outer region, far away from the airfoil singu-
larity, Goldstein’s formulation provides a boundary
value problem which is better suited for wave prop-
agation in an open domain. Numerical results show
that the single domain approach is very sensitive to
the location of the outer grid boundary, and is un-
able to provide a consistent or grid independent so-
lution at the higher reduced frequencies. On the
other hand, the domain decomposition approach is
largely insensitive to the location of the outer grid
boundary, and provides an acceptably grid indepen-
dent solution for reduced frequencies ranging from
0.1 to 3.0.
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